Skip links

How to Choose the Right Valve (Flap)?

In industrial plants especially in mining production lines flow control equipment  plays a crucial role not only in process efficiency but also in system safety. One of  the most vital components of this equipment is the flap (valve), which is used to  direct, cut off, and transfer raw materials in solid, granular, or powdered form in a 

controlled manner. Not every process is suitable for the same type of flap. Choosing  the  wrong  valve  can  lead  to  equipment  wear  and  significant  production  losses.  Therefore, selecting the right flap is a decision that requires detailed analysis at the  engineering level. 

Types of Flaps and Application Differences  

Flaps  are  manufactured  in  different  types  based  on  the  characteristics  of  the  materials  they carry and  the operating conditions of  the system.  Common  types  include louver  (jalousie)  valves,  pneumatic  valves,  slide  gate  valves,  and  rotary  valves.  In abrasive  or  high-temperature  environments,  special  designs like  steel  flaps with compensators are also preferred. 

Louver flaps are typically used in large-section ducts to direct air or gas flow, while  pneumatic  flaps  are  favored in  high-frequency  open-close  operations, especially  within automation systems. Slide gate valves are effective in loading and unloading  lines  where  quick  intervention  is  needed.  Rotary  valves  are  used  both  for  flow  control and dosing. 

Technical Criteria That Influence Selection  

The first criterion for choosing the correct flap is the physical nature of the material  being  transported.  Dusty,  granular,  pelletized,  or  fibrous  materials  require  different  flap  designs.  For  abrasive  substances,  valves  with  hardened  inner  surfaces or coated with wear-resistant alloys are recommended. 

The  second  critical  factor  is  process  temperature  and  pressure.  In  systems  operating  at  high  temperatures,  sealing  performance  becomes  a  priority—heat resistant gasket structures or metal-to-metal sealing designs should be considered.  Additionally, if environmental requirements such as dust-tightness are important,  the valve’s insulation capability must also be analyzed. 

Third,  operating  frequency  and  system integration must  be  considered.  In lines  with  frequent  opening  and  closing,  pneumatic  or  motorized  flap  systems  are  preferred.  In  cases  where  occasional  but  secure  actuation is  needed, manual  or  gear-driven  systems  are  more  appropriate.  If  the  valve  will  be  integrated  with  plant automation, actuator compatibility and signal feedback features should also  be assessed. 

Right Material and Design for Long-Term Performance  

A  flap’s  long-term  performance—not  just  its  initial  functionality—must  be  accounted  for.  In  abrasive  environments,  using  valves  with  replaceable  body  materials and sealing parts can reduce maintenance time and operational costs. In  tight  installation  spaces,  compact  designs  are  preferred.  To  prevent  backflow,  spring-supported or bi-directional sealing flap designs improve system safety.

Correct  valve  selection  should  combine  field  experience,  process  analysis,  and  engineering support. Every process presents unique flow conditions and structural  requirements.  Therefore, instead  of  a  “standard  product”  approach,  a  “process focused solution” principle delivers the best outcomes. 

While  flaps may seem like small components in industrial production lines, they  have a major impact on the entire facility. An incorrectly selected flap can interrupt  material  flow, increase maintenance  costs,  and  reduce  system efficiency. Hence,  valve  selection  must  be  based  on  a  comprehensive  evaluation  of  process  characteristics,  environmental  conditions,  and  operational  expectations.  A  flap  designed  from  an  engineering  perspective  and  tailored  to  the  field  will  be  an  indispensable part of a safe, durable, and high-efficiency system.